八皇后

八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例。该问题是国际西洋棋棋手马克斯·贝瑟尔于1848 年提出:在 8×8 格的国际象棋上摆放八个皇后,使其不能互相攻击,即:任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法?

BF54C6BB-1CB9-4408-8438-95BC7819F8A8.jpeg

在上个世纪,计算机不发达的时候,这个问题困惑着所有人。现在已经有相关算法算出最终结果是92种摆法。

思路

1.第一个皇后先放第一行第一列

2.第二个皇后放在第二行第一列、然后判断是否 OK, 如果不 OK,继续放在第二列、第三列、依次把所有列都放完,找到一个合适

3.继续第三个皇后,还是第一列、第二列……直到第 8 个皇后也能放在一个不冲突的位置,算是找到了一个正确解

4.当得到一个正确解时,在栈回退到上一个栈时,就会开始回溯,即将第一个皇后,放到第一列的所有正确解,全部得到.

5.然后回头继续第一个皇后放第二列,后面继续循环执行 1,2,3,4 的步骤

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

public class Queue8 {
//定义一个 max 表示共有多少个皇后
int max = 8;
//定义数组 array, 保存皇后放置位置的结果,比如 arr = {0 , 4, 7, 5, 2, 6, 1, 3}
int[] array = new int[max];
static int count = 0;
static int judgeCount = 0;

public static void main(String[] args) {
//测试一把 , 8 皇后是否正确
Queue8 queue8 = new Queue8();
queue8.check(0);
System.out.printf("一共有%d 解法", count);
System.out.printf("一共判断冲突的次数%d 次", judgeCount);
// 1.5w
}

//编写一个方法,放置第 n 个皇后
//特别注意: check 是 每一次递归时,进入到 check 中都有for(int i = 0; i < max; i++),因此会有回溯
private void check(int n) {
if(n == max) {
//n = 8 , 其实 8 个皇后就既然放好
print();
return;
}
//依次放入皇后,并判断是否冲突
for(int i = 0; i < max; i++) {
//先把当前这个皇后 n , 放到该行的第 1 列
array[n] = i;
//判断当放置第 n 个皇后到 i 列时,是否冲突
if(judge(n)) {
// 不冲突
//接着放 n+1 个皇后,即开始递归
check(n+1);
}
//如果冲突,就继续执行 array[n] = i; 即将第 n 个皇后,放置在本行得 后移的一个位置
}
}

//查看当我们放置第 n 个皇后, 就去检测该皇后是否和前面已经摆放的皇后冲突
/**
*
* @param n 表示第 n 个皇后
* @return
*/
private boolean judge(int n) {
judgeCount++;
for(int i = 0; i < n; i++) {
// 说明
//1. array[i] == array[n] 表示判断 第 n 个皇后是否和前面的 n-1 个皇后在同一列
//2. Math.abs(n-i) == Math.abs(array[n] - array[i]) 表示判断第 n 个皇后是否和第 i 皇后是否在同一斜线
// n = 1 放置第 2 列 1 n = 1 array[1] = 1
// Math.abs(1-0) == 1 Math.abs(array[n] - array[i]) = Math.abs(1-0) = 1
//3. 判断是否在同一行, 没有必要,n 每次都在递增
if(array[i] == array[n] || Math.abs(n-i) == Math.abs(array[n] - array[i]) ) {
return false;
}
}
return true;
}
//写一个方法,可以将皇后摆放的位置输出
private void print() {
count++;
for (int i = 0; i < array.length; i++) {
System.out.print(array[i] + " ");
}
System.out.println();
}
}